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Abstract
We present discrete Painlevé equations which can be obtained as contiguity
relations of the solutions of the continuous Painlevé VI. The derivation is
based on the geometry of the affine Weyl group D(1)

4 associated with the
bilinear formalism. As an offshoot we also present the contiguity relations
of the solutions of the Bureau–Ablowitz–Fokas equation, which is a Miura
transformed, ‘modified’, PVI.

PACS numbers: 02.20.−a, 02.30.Hq

1. Introduction

Among all the interesting properties of the Painlevé equations the contiguity relations of
their solutions play a very special role. They provide a link between the Painlevé equations
and their discrete counterparts. A contiguity relation establishes an identity between the
solutions of an equation (for the same value of the continuous variable) obtained for values of
the parameters which differ by an integer multiple of an elementary step. Since no derivatives
of the solution of the continuous equation appear in the contiguity relation the latter can be
viewed as a discrete evolution equation in which the parameters of the continuous system
play the role of the (discrete) independent variable (while the continuous variable is now
relegated to the role of a mere parameter). One of the first occurrences of the discrete Painlevé
equation in the literature was in the work of Jimbo and Miwa [1] who obtained the contiguity
relation of the continuous PII (but did not proceed to show that the resulting mapping was a
discrete analogue of PI). The construction of a contiguity relation of a continuous Painlevé
equation follows a systematic procedure [2]. One starts from two auto-Bäcklund or Schlesinger
transformations of a continuous Painlevé equation which relate the solution for three adjacent
values of some parameter and eliminates all instances of the derivative of the solution. The
resulting equation is a discrete Painlevé equation and the main advantage of this procedure is
that it furnishes also the Lax pair of the discrete system [3].

The ‘contiguity’ approach has been successfully used for the construction of discrete
Painlevé equations. In this paper we shall focus on the discrete systems obtained from the
contiguity relations of the solutions of PVI. Already in [4] we have studied some discrete
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systems which are related to the Painlevé VI equation through the similarity reductions of
a two-dimensional lattice equation of KdV type. (These results were complemented and
extended in [5] by Nijhoff, Joshi and Hone). Here we shall explore the contiguity relations
of the solutions of PVI in a systematic way with the help of a geometrical approach based
on affine Weyl groups. The geometrical description of the transformations of the continuous
Painlevé equations was introduced by Okamoto [6] and extended to the case of discrete
Painlevé equations by the present authors in collaboration with Satsuma [7]. It has been cast
by Sakai, in his ground-breaking work [8], into the proper perspective providing the complete
classification of discrete Painlevé equations, which arise as reductions of the master system
associated with E(1)

8 . Sakai obtained both difference and q-type equations and, moreover,
discovered a third species, namely that of elliptic discrete Painlevé equations. In this paper we
shall proceed from the explicit construction of the geometry of the weight lattice of the affine
Weyl group D(1)

4 to the derivation of the elementary Miura transformation. The contiguity
relations are obtained by choosing a trajectory obtained by infinite repetitions of a non-closed
pattern on the weight lattice of D(1)

4 and combining appropriately the Miura transformations.

2. The Painlevé VI equation

The canonical form of the sixth Painlevé equation is

d2w
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= 1
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. (2.1)

In this form PVI has solutions with fixed singularities at ∞, 0,1 and t, the latter being
the independent variable. The θi are just the monodromy exponents at the four singularities.
Equation (2.1) is invariant under the six-elements group generated by {x → 1 − x, t →
1 − t}, {x → 1/x, t → 1/t}.

However equation (2.1) is but one possible form of PVI. A more general homographic
change [9] of the dependent variable (involving three free functions) and a further free
change of the independent variable can set the singularities at completely arbitrary positions
a(t), b(t), c(t), d(t). The resulting equation is rather awkward looking, but simplifies
somewhat if one chooses as independent variable

T (t) = (d(t) − b(t))(c(t) − a(t))

(d(t) − a(t))(c(t) − b(t))

in which case it becomes
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ḃ

w − b
+

ċ
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, (2.2)

where the dot indicates derivative with respect to T while e and f, g, h, j are lengthy
expressions, the latter four being of the form f = f0θ

2
a + f1 and so on. From now on

we will denote the independent variable as t and the derivative with respect to it by a prime.
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When one is essentially interested in the continuous evolution along the independent
variable, the use of the canonical form (2.1) is usually preferred. But when one is interested in
the discrete equations which are nonlinear contiguities of solutions with different values
of the monodromy exponents, the noncanonical form (2.2) leads to useful insights. A
basic contiguous solution is provided by the following auto-Bäcklund transformation. If
w satisfies (2.1) then the same equation for different values of the monodromy exponents �i’s
(i = ∞, 0, 1, t) will be satisfied by W defined through [5, 6]

1 − ∑
θi

W − w
= t (t − 1)w′

w(w − 1)(w − t)
+

θ0

w
+

θ1

w − 1
+

θt − 1

w − t
(2.3)

and

�j = θj +
1

2
− 1

2

∑
θi =

(
θj − 1

2

)
− 1

2

∑ (
θi − 1

2

)
. (2.4)

This elementary auto-Bäcklund transformation can be written as the product of two Miura
transformations to another object φ which satisfies a different second-order equation. The first
Miura transformation is

φ = t
w′

w
+

θ∞
2(t − 1)

w +
θ0

2(t − 1)

t

w
− (θ∞ + θ0)(t + 1)

2(t − 1)
− 1

2
, (2.5a)

w = t (t2 − 1)φ + 2t (κφ + µ) + t (t − 1)�

2t (t − 1)φ′ − (t − 1)(φ2 + ν) − (t + 1)(κφ + µ)
, (2.5b)

where

� = 2t (t − 1)2φ′′ + (t − 1)(3t − 1)φ′ + 4φ(φ2 + ν) − 2κ(κφ + µ)

2(t + 1)φ + λ(t − 1)
(2.6)

and κ = θ0 − θ∞ − 1, λ = θ0 + θ∞, 2µ = θ2
1 − θ2

t and 2ν = −θ2
1 − θ2

t + κ2/2.
Eliminating φ in (2.5) leads to the PVI, equation (2.1), for w, while eliminating w leads

to an equation for φ:

t�2 = t (t − 1)2φ′2 + (φ2 + ν)2 − (κφ + µ)2. (2.7)

This equation has been described by Bureau in [10] as well as Ablowitz and Fokas in [11].
Note that it is of second degree in φ′′.

A second Miura transformation exists in which θ1 and θt would play the role of θ∞ and θ0

in (2.5). As a result, the auto-Bäcklund transformation (2.3) is the combination of these two
‘orthogonal’ Miuras.

3. Derivation of the contiguity relations

The best way to look at the Miura and auto-Bäcklund transformations of Painlevé equations is
to express the solutions in terms of τ -functions which are entire functions of the independent
variable t and depend on the monodromy exponents. For any fixed value of t, the τ -functions
satisfy bilinear Hirota–Miwa equations of the form

H1τ̄ τ
¯

+H2τ̃ τ
˜

+ H3τ̂ τ
ˆ

= 0, (3.1)

where the accents ¯ , ˜ and ˆ over and under τ s describe reciprocal modifications of the
monodromy exponents. One of the advantages of this approach, introduced by Okamoto
[6], is to classify these nonlinear contiguity relations which are in fact discrete Painlevé
equations. Note that such a classification in terms of affine Weyl groups can be extended, as
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was shown by Sakai [8], to discrete Painlevé equations which are not contiguity relations of
the solutions of (continuous) Painlevé equations. As Okamoto has noted, τ -functions ‘live’ on
the vertices of the weight lattice of some affine Weyl group. In the case of discrete equations
related to PVI the relevant affine Weyl group is D(1)

4 .
This weight lattice can be described by two equivalent representations. One such

representation of the weight lattice is the subset of Z
4 such that the sum of coordinates is

even. In this case, the nearest neighbours (NN) of the origin are at the distance D = √
2.

There are 24 such NN of the form


±1
±1
0
0




with two zero coordinates and two coordinates of absolute value 1. They are manifestly
equivalent. The next nearest neighbours (NNN) of the origin are at distance 2. There are again
24 of them, eight on the four axes, with the only nonzero coordinate of absolute value 2, and
16 more with all coordinates of absolute value 1, with four independent signs. They are also
equivalent, although they do not look so. This is related to the fact that in four dimensions,
the diagonal of a hypercube has just twice the length of its side, and thus a vertex is at the
same distance of an adjoining vertex as to the centre of this hypercube. (This is unique to
four dimensions, though in eight dimensions, there exists a similar situation. The diagonal of
the hypercube is twice the length of the diagonal of an elementary square, and thus a vertex
is at the same distance of a next neighbouring vertex as to the centre of this hypercube. The
dimension eight is of particular interest since eight is the largest number of dimensions of
affine Weyl groups related to second-order Painlevé equations.)

The other representation has vertices with coordinates either all even or all odd. This is
equivalent to the first representation, through a rotation and a scaling by a factor

√
2. Note that

in that case the 24 NN of the origin have exactly the coordinates of the next nearest neighbours
of the origin in the previous case, while the next nearest neighbours of the origin have two
zero coordinates and two coordinates of absolute value 2 (that is, exactly twice the coordinates
of the NN of the origin in the other representation) and are now manifestly equivalent. This
shows that, as we said earlier, both the 24 NN of the origin, on the one hand, and the 24 next
nearest neighbours of the origin, on the other hand, are equivalent to each other.

In [4] we used the first representation, and we wrote the relevant bilinear Hirota–Miwa
equations. But for the purpose of the present paper we will use the second one, and we will
write bilinear Hirota–Miwa equations which are equivalent, through gauge transformations
which, however, we will not give explicitly.

The solutions w of PVI live at midpoint of τ s in NNN relative position and have two even
and two odd coordinates. For instance, there is such a solution, say w12, at the point x12 at


−1
−1
0
0




which is the midpoint of four pairs of τ s in NNN relative position:





0
0
0
0


 ,




−2
−2
0
0





 ,







0
−2
0
0


 ,




−2
0
0
0





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and the two pairs





−1
−1
1

±1


 ,




−1
−1
−1
∓1




 .

The notation of indices and exponents for points like x and variables like τ or w indicates by
how many units one has moved away from the origin in the respective directions. In this case
an exponent ωi means that we have moved by one step up in the i direction, ωii means two
steps up in the i direction and so on. Conversely ωi means one step down in the i direction etc.
Since one can move simultaneously in all four directions, more complicated combinations of
exponents/indices can exist.

At this point one can comment on the relation between the (rather abstract) coordinates in
the four-dimensional D(1)

4 space and θj . First, we must remember that a priori, homographic
invariance allows us to shift the singularities from ∞, 0, 1 and t to four arbitrary functions
a, b, c and d of t, so the index of any θ is irrelevant, only the set of the four θj is meaningful.
Also, from (2.1) (or (2.2)) each θ is only defined up to a sign. We are now in a position to
compute θj at each point of the lattice. The coordinates mi of τ s and xs in the lattice are
integers (with further restrictions on parity, as explained above), but the relevant values ni

(which will appear later in the paper) must be understood as globally shifted by an arbitrary
set of numbers fi (fixed once and for all) i.e., ni = mi + fi, i = 1, . . . 4.

At point x12 above, the directions leading to τ s in NNN position are

±




1
1
0
0


 , ±




1
−1
0
0


 , ±




0
0
1
1


 and ±




0
0
1

−1


 .

The four θs, up to a sign, are half the projection of the vector of components ni , which at point
x12 is just 


f1 − 1
f2 − 1

f3

f4




in these four directions, respectively ±(f1 + f2 − 2)/2,±(f1 − f2)/2,±(f3 + f4)/2 and
±(f3 − f4)/2. Note that at point x13 (or x3

1 , or x24, or x24
11 , etc) the arrangement would be

different, mixing directions 1 and 3 on the one hand, 2 and 4 on the other hand, and the third
combination (1 with 4, 2 with 3) will appear at points like x14, x

3
2 , x2344, x

24444
113 and so on.

The τ -functions obey many equations, among which some involve the continuous variable.
For a fixed given value of the continuous variable the τ -functions obey bilinear equations on
the D(1)

4 lattice. These equations are highly overdetermined but of course compatible. One set
of equations are ‘around’ the positions x of the w variables. For instance around x12 we have
the equations

Cττ1122 − Sτ11τ22 = τ1234τ
34
12 (3.2a)

Sττ1122 − Cτ11τ22 = τ 4
123τ

3
124, (3.2b)

where C and S obey the hyperbolic functions rule C2−S2 = 1, and are related to the continuous
variable of PVI. Note however that one cannot make this relation explicit until the precise
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values of the functions a, b, c, d and T in terms of t are given. All equations of the form (3.2)
with all permutations of all four directions, as well as translations by vectors of the lattice
(any vector with all its components of the same parity), are simultaneously satisfied on the
lattice. Note however that the equations are not invariant under change of the orientation
of the axes, not even up to simple modifications. For instance, changing the orientation of
the ‘4’-axis cannot just be compensated by the interchange of S and C because this does not
conserve the hyperbolic relation C2 − S2 = 1. Such a change is possible but only up to a
very complicated gauge transformations on the τ -functions. One sees that any two of the
products of two τ -functions on one of the four pairs of NNN around x12 determine the two
others as linear combinations. As a result the ratio of any two of these products can be written
as a homographic function of the ratio of any two of them (not necessarily both different).
Since, as we remarked above, the actual value of the solution w12 is only determined up to an
arbitrary homographic transformation it follows that until extraneous information is added to
fix that transformation, the ratio of any two of these products is as good a definition of w12 as
any other one. In particular the canonical form (2.1) can be recovered with

w ≡ w12 = S

C

τ 4
123τ

3
124

τ1234τ
34
12

, a = ∞, b = 0, c = 1, d = T =
(

S

C

)2

.

(3.3)

Just as in the case of x12 above, the index and exponent notation for the nonlinear variables
and τ s indicate the point on the lattice where the variable lives i.e. by how many units one has
moved away from the origin in the respective directions.

Another interesting set of bilinear equations can be written around points which are
midpoints of τ s in NN relative position. As we have argued above, all these points are actually
equivalent, and were explicitly so in the parametrization of the lattice used in [4]. In the
present parametrization, however, this is not the case, and they fall into two apparent classes:
points of the form

ξ1 =




−1
0
0
0




with all integer coordinates, one of a given parity and the three others having the opposite
parity on the one hand, and points with all coordinates half-integer, on the other hand. The
NN pair of τ s around ξ1 are τ at the origin and τ11 at


−2
0
0
0


 .

Exactly four pairs of τ s at square distance D2 = 12 exist around this point. Indeed the eight
points 


−1
σ1

σ2

σ3




where σ 2
i = 1 are at square-distance D2 = 3 from ξ1 and two by two symmetrical with

respect to it. The value of the variable at ξ1 (which is nothing but the variable φ ≡ φ1 of the
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Bureau–Ablowitz–Fokas equation) has four expressions leading to more bilinear equations:

φ1 = τ1234τ
234
1

τ11τ
− (n2 + n3 + n4)

= τ 2
134τ

34
12

τ11τ
− (n2 − n3 − n4)

= τ 3
124τ

24
13

τ11τ
− (−n2 + n3 − n4)

= τ 4
123τ

23
14

τ11τ
− (−n2 − n3 + n4). (3.4)

Note that at ξ1, though m1 = −1, one has m2 = m3 = m4 = 0, and thus all the ni that appear
in (3.4) are equal to the respective shifts fi .

Equating any of these expression to the three others leads to three independent equations.
Multiplying by ττ11 we obtain three bilinear equations. Moreover there are two independent
ways to combine these three equations in order to eliminate the product ττ11, in favour of
products of τ s at square distance 12 to each other. For instance

(n2 + n4)τ
2
134τ

34
12 − (n3 + n4)τ

3
124τ

24
13 + (n3 − n2)τ1234τ

234
1 = 0. (3.5)

Note that by construction, the sum of the coefficients of the products vanishes for all the
equations obtained in this way (because in the equations involving ττ11 the coefficients of
the other products are 1 and −1 respectively, and then linear combinations are taken). This
important property has been dubbed the ‘Hirota property’ [12]. This property is not gauge
invariant and is thus a rather arbitrary property of the gauge one is working with rather than
an essential property of the system under study. However the reason we are using the present
parametrization of the space is precisely because the gauge with the Hirota property is very
natural with this parametrization, while it would be extremely awkward in the parametrization
of [4].

Starting from (3.5) we divide by τ1234τ
24
13 τ 34

12 and multiply by τ 4
123 obtaining

(n2 + n4)
τ 2

134τ
4
123

τ1234τ
24
13

− (n3 + n4)
τ 3

124τ
4
123

τ1234τ
34
12

+ (n3 − n2)
τ 234

1 τ 4
123

τ 34
12 τ 24

13

= 0, (3.6)

which can provisionally be written as

(n2 + n4)W13 − (n3 + n4)W12 + (n3 − n2)W
4
1 = 0, (3.7)

where W s are solutions of some form of equation (2.2), containing all the information
concerning the site they are on, and are a homographic function of the actual values of the
variables of the PVI equation we will actually choose. In fact, it is convenient to choose
W = 1/w for all three variables of (3.7). An elementary calculation shows that it follows that

n2 + n4

w12 − w4
1

+
n3 − n2

w12 − w13
= n3 + n4

w12
. (3.8)

Because of the Hirota property of the bilinear equation, the numerator of the rhs is the sum
of the numerators of the two terms on the lhs A slightly different choice of W = 1/(w − µ)

would have been possible (corresponding to a singularity at µ) but here we chose simply to
put the singularity at zero.

Eliminating φ1 and ττ11 in (3.4) in a different way we get the equation

(n4 − n3)τ1234τ
234
1 − (n2 + n4)τ

23
14 τ 4

123 + (n2 + n3)τ
3
124τ

24
13 = 0, (3.9)

which (dividing by τ 4
123τ

3
124τ

234
1 and multiplying by τ 34

12 ) leads to

(n4 − n3)w12 − (n2 + n4)w
3
1 + (n2 + n3)w

4
1 = 0, (3.10)
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where w3
1 = τ 34

12 τ 23
14

/(
τ 234

1 τ 3
124

)
. Here we get

− (n2 + n4)

w4
1 − w12

+
(n2 + n3)

w3
1 − w12

= 0. (3.11)

Even though the bilinear equation (3.9) still has the Hirota property, the sum of the numerators
of the two terms on the lhs is not matched on the lhs. In fact a term (n4 − n3)/(w12 − ρ) is
formally present, but the relevant singularity ρ is infinite.

Bilinear equations around points with all coordinates half-integer also exist. These points
are mid-points of τ s in NN positions and are equivalent to points like ξ1 (though the equivalence
in this case is not manifest). Around the point ζ at


−1/2
−1/2
−1/2
−1/2




one could define a Bureau–Ablowitz–Fokas variable, analogous to φ1. We will not, however,
write the analogue of full (3.4) system but only the analogue of (3.5), namely the bilinear
equation

(n3 − n2)τ
1
234τ11 + (n1 − n3)τ

2
134τ22 + (n2 − n1)τ

3
124τ33 = 0, (3.12)

which also has the Hirota property. Dividing by τ11τ22τ33 and multiplying by τ 4
123 we obtain

(n3 − n2)
τ 1

234τ
4
123

τ22τ33
+ (n1 − n3)

τ 2
134τ

4
123

τ11τ33
+ (n2 − n1)

τ 3
124τ

4
123

τ11τ22
= 0, (3.13)

which again can provisionally be written as

(n3 − n2)V23 + (n1 − n3)V13 + (n2 − n1)V12 = 0, (3.14)

where V s contain the information of the solution of PVI but maybe up to some homography.
Careful calculations (using (3.2)) show that in fact 1/V12 = Sw12 − C, and since everything
is invariant upon permutation of the directions, 1/V13 = Sw13 − C. Defining x23 in the same
way in terms of V23, we can write

n3 − n2

w23 − ν
+

n1 − n3

w13 − ν
+

n2 − n1

w12 − ν
= 0, (3.15)

where now the singularity is at ν = C/S. This equation can be rewritten in several ways,
leading to different interpretations. For instance one can write:

n3 − n2

w13 − w12
+

n2 − n1

w13 − w23
= n3 − n1

w13 − ν
. (3.16)

Comparing with (3.8) one can give the following interpretation: we go from wm−2 ≡ w23

to wm−1 ≡ w13 to wm ≡ w12 to wm+1 ≡ w4
1, and (3.16) and (3.8) are the (m − 1) and m

instances of the formal expression:

Zm+1/2

wm − wm+1
+

Zm−1/2

wm − wm−1
= Zm+1/2 + Zm−1/2

wm − am

. (3.17)

The points x13, x12 and x4
1 (and also x23, x13 and x12), where the relevant w live, form an

equilateral triangle. The evolution corresponds to some complicated, spiral, trajectory where
two successive triangles have a common side. In particular, we have identified one possible
trajectory where on the rhs of (3.17) the variable am has period four taking successively the
value of the four singularities, 0 (see (3.8)), ν = C/S (see (3.16)), and also σ = S/C and
ρ ≡ ∞. In the latter case the rhs will in fact vanish, thus giving the impression that the
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sum of the numerators of the lhs is not balanced by that of the rhs while in fact one must
think in terms of a balancing numerator with an infinite denominator. Indeed, this precise
denominator would appear if we were to apply a homographic transformation on w to bring
the infinite singularity at finite distance. The Zm are obtained as linear combinations of the
ni , and for the particular trajectory we are considering, having periodicity six in addition to a
linear dependence on m: Zm+1/2 = pm + q + k(−1)m + rjm + sj 2m where j is a cube root of
unity.

A different contiguity relation is obtained if we reorganize the terms in (3.15) as
n3 − n2

w12 − w13
+

n1 − n3

w12 − w23
= n1 − n2

w12 − ν
, (3.18)

and subtract (3.18) from (3.8) to eliminate w13. We obtain then
n2 + n4

w12 − w4
1

+
n3 − n1

w12 − w23
= n3 + n4

w12
+

n2 − n1

w12 − ν
. (3.19)

By construction the sum of the numerators of the lhs is balanced by the sum of the
numerators of the rhs. If we now define wm−1 ≡ w23, wm ≡ w12 to wm+1 ≡ w4

1, we formally
get

Zm+1/2

wm − wm+1
+

Zm−1/2

wm − wm−1
= Za

wm − am

+
Zb

wm − bm

. (3.20)

The points x23, x12 and x4
1 , where the relevant w live, form a right isosceles triangle.

Within the plane of the triangle we can define an evolution which follows a staircase trajectory.
Equation (3.19) is then complemented by

n3 − n1

w23 − w12
+

n4 + n2 − 2

w23 − w2234
= n3 + n2 − 2

w23 − σ
+

n4 − n1

w23 − ρ
. (3.21)

If we now define wm−2 ≡ w2234, we obtain the (m − 1) occurrence of (3.20). Along
this trajectory am alternates between the values 0 and ρ ≡ ∞ while bm alternates between ν

and σ . The corresponding Za and Zb are pm + q + r im + s(−i)m and pm + q − r im − s(−i)m,
respectively, while we have Zm+1/2 = p(m + 1/2) + q + k(−1)m. Note that we have
Za + Zb = Zm−1/2 + Zm+1/2.

Another possibility of contiguity can be obtained from

n1 − n3

w12 − w23
+

n4 + n2 − 2

w12 − w1224
= n1 + n2 − 2

w12 − σ
+

n4 − n3

w12 − ρ
, (3.22)

where we have already seen that σ = s/c and ρ = ∞. So the last term on the rhs of (3.22) is
effectively absent. Adding (3.22) to (3.19) we eliminate w23 and get

n2 + n4

w12 − w4
1

+
n4 + n2 − 2

w12 − w1224
= n3 + n4

w12
+

n2 − n1

w12 − ν
+

n1 + n2 − 2

w12 − σ

{
+

n4 − n3

w12 − ∞
}

(3.23)

with a ‘phantom’ fourth term. The points x1224, x12 and x4
1 , where the relevant w live, are on

a straight line along the vector


0
1
0
1


 .

With the notation wm−1 ≡ w1224, wm ≡ w12 to wm+1 ≡ w4
1, we formally get

Zm + Zm+1

wm − wm+1
+

Zm + Zm−1

wm − wm−1
= Za

wm − a
+

Zb

wm − b
+

Zc

wm − c
+

Zd

wm − d
. (3.24)
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Here Zm is strictly linear in m without any periodicity (in fact, Zm = (n2 + n4 − 1)/2 and
both n2 and n4 increase by one unit with m). All four singularities a, b, c, d, which are just 0,
C/S, S/C and ∞ in this case, appear at each step and can thus be taken as constant. The four
Zk, k = a, b, c, d, depend on m in a very specific way: Zk(m) = Zm + (−1)m�k, where the
�k satisfy

∑
k �k = 0. Therefore the sum of the numerators on the rhs balances the sum on

the lhs in the generic case where all four singularities are at finite distance, which can always
be achieved with a homographic transformation. This is the well-known [9, 13] contiguity
relation of PVI.

A more complicated case can also be considered. Subtracting (3.18) from (3.22) we get

n4 + n2 − 2

w12 − w1224
+

n2 − n3

w12 − w13
= n1 + n2 − 2

w12 − σ
+

n2 − n1

w12 − ν
+

n4 − n3

w12 − ρ
. (3.25)

With wm−1 ≡ x13, wm ≡ x12 to wm+1 ≡ x1224, we formally get

Zm+1/2

wm − wm+1
+

Zm−1/2

wm − wm−1
= Za

wm − am

+
Zb

wm − bm

+
Zc

wm − cm

. (3.26)

The trajectory is a complicated one in the weight lattice of D(1)
4 . All four singularities

must appear on the rhs somewhere on the trajectory. One can choose for instance am ≡ σ

and bm ≡ ν present at each step while for cm, 0 and ∞ alternate. We first introduce
Zm+1/2 = zm + zm+1 with zm = pm + q + r jm + s j2m. Moreover we have Za = zm + k(−1)m,
Zb = zm − k(−1)m, Zc = zm+1 + zm−1. Note that Za + Zb + Zc = Zm−1/2 + Zm+1/2, but the
term involving Zc does not appear on every other step when cm = ∞.

To sum it up, our equations (3.17) (of which (3.8) and (3.16) are instances), (3.20) (of
which (3.19) and (3.21) are instances) and (3.26) (of which (3.25) is an instance), are indeed
new as stressed again here. Mappings (3.17), (3.20) and (3.26) are distinct from (3.24): the
evolution described by (3.24) is in a straight line. In any instance involving three consecutive
points, the central point is indeed the midpoint of the two extreme ones. In all cases, the
distance between consecutive points is the square root of two in the appropriate units (in
the representation we use throughout the paper, the second one described in section 3). In
the case of (3.17), an instance relates three points forming an equilateral triangle. These
triangles wind up, in the four-dimensional D(1)

4 space in a way that, lacking four-dimensional
vision, we cannot have a clear visual representation. But one can check that the successive
displacements have a complicated, fully four-dimensional, character. In the case of (3.20), an
instance relates three points forming a right isosceles triangle. These triangles, as we have
said just after equation (3.20), all fit within a two-dimensional plane and form a ‘staircase’
whose overall direction makes a π/4 angle with the evolution described by (3.24), each ‘step’
of the staircase being either parallel or perpendicular to the direction of (3.24). In the case of
(3.26), an instance relates three points forming an isosceles triangle with angles 2π

3 and twice

π/6. Again, these triangles wind up, in the four-dimensional D(1)
4 space in a way for which

we do not have a visual representation. In these three cases, the basic element is not made of
three points in straight line and, for this reason, is not reducible to that of (3.24).

4. Conclusion

In this paper, we have obtained the contiguity relations of the solutions of the continuous PVI

which introduce new discrete Painlevé equations. The latter were obtained by considering
different trajectories consisting in infinite repetitions of a non-closed pattern on the weight
lattice of the affine Weyl group D(1)

4 which describes the transformations of PVI. The elementary
building block was the Miura transformation which relates to the solutions of PVI for three
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different values of the parameters which correspond to the vertices of an equilateral triangle
in the aforementioned space.

While all the contiguity relations derived above concerned the Painlevé VI equation one
may wonder whether analogous relations do exist for its ‘modified’ form, namely the Bureau–
Ablowitz–Fokas equation. It turns out that this is indeed possible and does not present
particular difficulties. Using (3.4) one can write an equation for φ1 at point ξ1 relating it to the
analogous variables at nearby equivalent points. In particular, we consider the points ζ at


−1/2
−1/2
−1/2
−1/2




and ζ ′ at 


−3/2
1/2
1/2
1/2


 .

We define ϕ2m = φ1 − (n2 + n3 + n4)/3 and similarly ϕ2m±1 at the two points ζ, ζ ′. Then we
find

(ϕ2m−1 + ϕ2m)(ϕ2m + ϕ2m+1)

= C2

S2

(
ϕ2m + 2

3 (2n2 − n3 − n4)
)(

ϕ2m + 2
3 (2n3 − n4 − n2)

)(
ϕ2m + 2

3 (2n4 − n2 − n3)
)

ϕ2m + 4
3 (n2 + n3 + n4)

.

(4.1)

The three quantities added to ϕ in the numerator of the rhs of (4.1) are independent of m
(which is not the case for the denominator). Complementing this equation by its ‘odd’ instance
(in which case it turns out that the ‘prefactor’ C2/S2 becomes C2) we find the equation

(ϕ2m−1 + ϕ2m)(ϕ2m + ϕ2m+1) = 1

T

(ϕ2m − za)(ϕ2m − zb)(ϕ2m − zc)

(ϕ2m − z2m)
,

(4.2)
(ϕ2m + ϕ2m+1)(ϕ2m+1 + ϕ2m+2) = 1

1 − T

(ϕ2m+1 + za)(ϕ2m+1 + zb)(ϕ2m+1 + zc)

(ϕ2m − z2m+1)
,

where, as we remarked above, za, zb, zc are combinations of ni which are constant along the
motion and zm is linear in m. The sum of the inverses of the prefactors is unity (remember S
and C are hyperbolic sine and cosine, respectively) and the canonical choice (3.3) was indeed
T = S2/C2. This is the contiguity relation for the solutions of the Bureau–Ablowitz–Fokas
equation.

The present study does not exhaust all the second-order discrete Painlevé equations one
can obtain as contiguity relations of the solutions of the sixth Painlevé equation. As we
explained in [14] an infinite number of them can indeed be constructed. Any trajectory
consisting in infinite repetitions of a non-closed pattern on the lattice of D(1)

4 would generate
such a discrete Painlevé equation.
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